41 research outputs found

    Intergeneric transfer of ribosomal genes between two fungi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Horizontal gene transfer, also called lateral gene transfer, frequently occurs among prokaryotic organisms, and is considered an important force in their evolution. However, there are relatively few reports of transfer to or from fungi, with some notable exceptions in the acquisition of prokaryotic genes. Some fungal species have been found to contain sequences resembling those of bacterial genes, and with such sequences absent in other fungal species, this has been interpreted as horizontal gene transfer. Similarly, a few fungi have been found to contain genes absent in close relatives but present in more distantly related taxa, and horizontal gene transfer has been invoked as a parsimonious explanation. There is a paucity of direct experimental evidence demonstrating the occurrence of horizontal gene transfer in fungi.</p> <p>Results</p> <p>We found a fungal field isolate from rice (<it>Oryzae sativa</it>) that contains ribosomal DNA sequences from two species of fungal rice pathogens (<it>Thanatephorus cucumeris </it>and <it>Ceratobasidium oryzae-sativae</it>). This field isolate has four types of ribosomal DNA internal transcribed spacers (ITS), namely pure ITS of <it>C. oryzae-sativae</it>, which was dominant in this field isolate, pure ITS of <it>T. cucumeris</it>, and two chimeric ITS, with ITS1 derived from <it>C. oryzae-sativae </it>and ITS2 from <it>T. cucumeris</it>, or ITS1 from <it>T. cucumeri</it>s and ITS2 from <it>C. oryzae-sativae</it>. The presence of chimeric forms indicates that the intergeneric hybrid was not merely composed of nuclei from the parental species, but that nuclear fusion and crossing over had taken place.</p> <p>Conclusion</p> <p>Hyphae of <it>T. cucumeris </it>and <it>C. oryzae-sativae </it>are vegetatively incompatible, and do not successfully anastomose. However, they parasitize the same host, and perhaps under the influence of host enzymes targeted to weaken pathogen cells or in dying host plant tissue, the fungal hyphae lost their integrity, and normal vegetative incompatibility mechanisms were overcome, allowing the hyphae to fuse. Based on the presence of other similarly anomalous isolates from the field, we speculate that these types of intergeneric hybridization events and occurrences of horizontal gene transfer may not be so rare in the field.</p

    Evolutionary genomics of mycovirus-related dsRNA viruses reveals cross-family horizontal gene transfer and evolution of diverse viral lineages

    Get PDF
    BACKGROUND: Double-stranded (ds) RNA fungal viruses are typically isometric single-shelled particles that are classified into three families, Totiviridae, Partitiviridae and Chrysoviridae, the members of which possess monopartite, bipartite and quadripartite genomes, respectively. Recent findings revealed that mycovirus-related dsRNA viruses are more diverse than previously recognized. Although an increasing number of viral complete genomic sequences have become available, the evolution of these diverse dsRNA viruses remains to be clarified. This is particularly so since there is little evidence for horizontal gene transfer (HGT) among dsRNA viruses. RESULTS: In this study, we report the molecular properties of two novel dsRNA mycoviruses that were isolated from a field strain of Sclerotinia sclerotiorum, Sunf-M: one is a large monopartite virus representing a distinct evolutionary lineage of dsRNA viruses; the other is a new member of the family Partitiviridae. Comprehensive phylogenetic analysis and genome comparison revealed that there are at least ten monopartite, three bipartite, one tripartite and three quadripartite lineages in the known dsRNA mycoviruses and that the multipartite lineages have possibly evolved from different monopartite dsRNA viruses. Moreover, we found that homologs of the S7 Domain, characteristic of members of the genus phytoreovirus in family Reoviridae are widely distributed in diverse dsRNA viral lineages, including chrysoviruses, endornaviruses and some unclassified dsRNA mycoviruses. We further provided evidence that multiple HGT events may have occurred among these dsRNA viruses from different families. CONCLUSIONS: Our study provides an insight into the phylogeny and evolution of mycovirus-related dsRNA viruses and reveals that the occurrence of HGT between different virus species and the development of multipartite genomes during evolution are important macroevolutionary mechanisms in dsRNA viruses

    miR-140-5p suppresses the proliferation, migration and invasion of gastric cancer by regulating YES1

    Get PDF
    Background: The aberrant expression of microRNA-140-5p (miR-140-5p) has been described in gastric cancer (GC). However, the role of miR-140-5p in GC remains unclear. In this study, the prognostic relevance of miR-140-5p in GC was investigated and YES1 was identified as a novel target of miR-140-5p in regulating tumor progression. Methods: miR-140-5p level was determined in 20 paired frozen specimens through quantitative real-time PCR, and analyzed in tissue microarrays through in situ hybridization. The target of miR-140-5p was verified through a dual luciferase reporter assay, and the effects of miR-140-5p on phenotypic changes in GC cells were investigated in vitro and in vivo. Results: Compared with that in adjacent normal tissues, miR-140-5p expression decreased in cancerous tissues. The downregulated miR-140-5p in 144 patients with GC was significantly correlated with the reduced overall survival of these patients. miR-140-5p could inhibit GC cell proliferation, migration and invasion by directly targeting 3'-untranlated region of YES1. miR-140-5p could also remarkably reduce the tumor size in GC xenograft mice. Conclusions: miR-140-5p serves as a potential prognostic factor in patients with GC, and miR-140-5p mediated YES1 inhibition is a novel mechanism behind the suppressive effects of miR-140-5p in GC

    Introgression of Chromosome 3Ns from Psathyrostachys huashanica into Wheat Specifying Resistance to Stripe Rust

    Get PDF
    Wheat stripe rust is a destructive disease in the cool and humid wheat-growing areas of the world. Finding diverse sources of stripe rust resistance is critical for increasing genetic diversity of resistance for wheat breeding programs. Stripe rust resistance was identified in the alien species Psathyrostachys huashanica, and a wheat- P. huashanica amphiploid line (PHW-SA) with stripe rust resistance was reported previously. In this study, a P. huashanica 3Ns monosomic addition line (PW11) with superior resistance to stripe rust was developed, which was derived from the cross between PHW-SA and wheat J-11. We evaluated the alien introgressions PW11-2, PW11-5 and PW11-8 which were derived from line PW11 for reaction to new Pst race CYR32, and used molecular and cytogenetic tools to characterize these lines. The introgressions were remarkably resistant to CYR32, suggesting that the resistance to stripe rust of the introgressions thus was controlled by gene(s) located on P. huashanica chromosome 3Ns. All derived lines were cytologically stable in term of meiotic chromosome behavior. Two 3Ns chromosomes of P. huashanica were detected in the disomic addition line PW11-2. Chromosomes 1B of substitution line PW11-5 had been replaced by a pair of P. huashanica 3Ns chromosomes. In PW11-8, a small terminal segment from P. huashanica chromosome arm 3NsS was translocated to the terminal region of wheat chromosomes 3BL. Thus, this translocated chromosome is designated T3BL-3NsS. These conclusions were further confirmed by SSR analyses. Two 3Ns-specific markers Xgwm181 and Xgwm161 will be useful to rapidly identify and trace the translocated fragments. These introgressions, which had significant characteristics of resistance to stripe rust, could be utilized as novel germplasms for wheat breeding

    On the Asymptotic Properties of Nonlinear Third-Order Neutral Delay Differential Equations with Distributed Deviating Arguments

    No full text
    This paper is concerned with the asymptotic properties of solutions to a third-order nonlinear neutral delay differential equation with distributed deviating arguments. Several new theorems are obtained which ensure that every solution to this equation either is oscillatory or tends to zero. Two illustrative examples are included

    Synthesis and Characterization of Star-Shaped Poly( l

    No full text
    corecore